

# PRS: Physics Reconstruction and Selection HCAL/JetsMET group

# **Status of JetsMET**

Shuichi Kunori U. of Maryland 22-Sep-2001



# **HCAL/JetsMET Group**

## S.Eno / S.Kunori - Coordinator

http://home.fnal.gov/~sceno/jpg/Default.htm

#### **Dates:**

End 2002 DAQ TDR (end 2001 for HLT section) End 2004 Physics TDR

## **Organization:**

**HCAL simulation –** Sunanda Banerjee (TIFR)

CMSIM/OSCAR(Full/Fast)

Verify shower model in G4.

**Calibration & Monitoring –** 

Olga Kodolova (MSU)

energy scale of jets, MET, tau

-> from detector construction/commission to in-situ calibration.

**HCAL** in ORCA -

**Salavat Abdullin (Maryland)** 

readout simulation + ...

Physics objects with HCAL – jets, MET & tau

Sasha Niketenko (CERN/ITEP)



# Activities present and near future

#### **Simulation**

- Geometry in CMSIM/OSCAR.
- Verify CMSIM/OSCAR.
- Verify hadron shower physics in G4.

## **Calibration & Monitoring**

- Data definition for Calibration Database
- HF (HB/HE) Calibration scenario
- In-situ calibration
  - γ/Z0-jet balancing // M(jj) for W from top
- Improvement of energy scale (+ resolution) [20GeV-TeV]

#### **ORCA** code

Readout simulation / Jet finder / MET code / ntuple maker

## HLT ( $\tau$ jet, jets, MET)

L1 verification / HLT algorithm and rates / Trigger table

## **Physics Analysis**

Dijet / Single top / ttH / qqH, H→ ττ, WW, invisible / SUSY / ...

past present future



# HLT for τ-jets / Jets / MET

## τ-jets

Narrow jet (similar to electron)

**BG: QCD jets** 

→ Refine narrowness L2: ECAL full segmentation

→ Identify 1/3 charged tracks L3: Pixel

## **Jets**

**BG: QCD jets** 

Fake (+ additional) jets due to pile-up (E<sub>T</sub><50GeV)

- → Improve energy scale and resolution
- → Remove fakes

### MET

BG: badly measured QCD jets (+ hot/dead cell) b/c semi-leptonic decays (?)

- → Improve energy scale and resolution
- → remove BG's.

12.5%

26%

7.5%

 $\begin{array}{ll} \tau^+ & -> \rho^+ \nu -> \pi^+ \pi^0 \nu \\ \tau^+ & -> a_1 \nu -> \pi^+ \pi^0 \pi^0 \nu \end{array}$ 



# τjets

#### tau jet:

narrow (one prong) jet

#### L1/L2:

use only calorimeter

L1: 0.087x0.087

L2: individual crystal

## L2.0 Tau trigger

- 1. reconstruct a Jet\*
- 2. calculate e.m. isolation:

$$P_{isol} = E_t^{ecal}(R < 0.4) - E_t^{ecal}(R < 0.13)$$

3. accept event if P<sub>isol</sub> < P<sub>cut</sub>

## gg->bbA, A-> $2\tau$ -> $h^+$ + $h^-$ + X



(CMS Note 2000/055)



# tau jets at L3



- 1. Reconstruct track with pixel. (PT>1GeV)
- 2. Reconstruct primary vertex.
- 3. Track match (highest PT) to L2 tau jet
- 4. Track isolation



(CMS Note 2001/017)



## **HLT Jets and Energy Corrections**

## Two steps for HLT jets

- 1) Find jets with R=0.5 –1.0 with fixed calorimeter weights.
- 2) Correct energy scale to sharpen turn on curve.

## **Energy Correction**

- Jet based
  - 1)  $E = a \times (EC+HC)$ , a depends on jet(ET, $\eta$ )
  - 2)  $E = a \times EC + b \times HC$ , a, b depend on jet(ET, $\eta$ )
- Particle based
  - E = em + had (requires to separate em/had clusters) (#)
     em = a x EC for e/γ
     had = b x EC + c x HC, for had. b (c) depend on EC (HC)
- Use of reconstructed tracks
  - 1)  $E = E_0 + (Tracks swept away by 4T field)$  (#)
  - 2)  $E = EC(e/\gamma + neutral) + HC(neutral) + Tracks$  (#)

(#) Reports during the cms week.



## **Jet Response and Correction #1**

#### **Et-eta dependent correction for QCD jets**

No pileup

 $Et(corr)=a + b \times E_T(rec) + c \times E_T(rec)^2$ 

With pileup



Offline Jets resolution,  $|\eta| < 5$ 





Offline Jets resolution, |n|<5





# **Dijet Mass Resolution**

#### No pileup

#### With pileup



### M(bb) in WH







#### **Jet energy correction**

without: 19%

with: 14%

CMSJET 15%

#### **After correction**





(V.Drollinger)



# $E_{T jet} = E_{T jet}^{calo} + p_{T}^{trks},$





# A.Nikitenko (Talk on Wednesday)





## **MET**





#### **Corrections**

Type 1: Jet corr.

Type 2: Jet corr. + out of cone corr.

## Out of cone corr. uses weights for jet(30GeV) corr.



(Nikitenko)



## Corrected MET for mSUGURA Jets+MET at low lumi





## Higgs mass in bbA, $A \rightarrow 2\tau \rightarrow 2j$

(A.Nikitenko)

#### before correction



#### after correction



| bbA, A->2τ->2j                           | no corrections | type1 corrections | type2 corrections | CMSJET    |
|------------------------------------------|----------------|-------------------|-------------------|-----------|
| <m<sub>H&gt;</m<sub>                     | 438.3 GeV      | 500.3 GeV         | 511.0 GeV         | 500.0 GeV |
| σ/ <m<sub>H&gt;</m<sub>                  | 19.7 %         | 18.9 %            | 16.8 %            | 13.4 %    |
| $\epsilon_{ m reco}$ (corr.) / (no corr) | 1              | 1.53              | 1.80              |           |



## **Jet Cone Size**

#### particle-jets vs. reco-jets





# Resolution of Mass(Z→jj) - 1994 study -



Larger R is better for di-jets @ low luminosity.

- → Need to test with multi jets.
- → @ high luminosity

(Vardanian/Kodolova)



5((Erjet-Erparton)/Erjet), %

# Effect of Threshold on low E<sub>T</sub> jet and MET

### 20GeV parton jet @ 10E34





Threshold on ECAL and HCAL transverse cell energy (GeV)

#### MET



(I.Vardanian)

#### Lower threshold is better!

Electronics noise and occupancy define the threshold. >> aim at 0.5GeV/tower @ 10E34



## Front end electronics simulation





(S.Abdoullin)



(Original scheme)

E =  $\Sigma$  (Signal buckets)<sub>i</sub> –  $\Sigma$ (pre buckets)<sub>j</sub>/n Electronics noise 200MeV/25nsec/ch  $\rightarrow$  500MeV/(3+3) buckets/ch

→ New scheme: 2 buckets for signal separate pedestal events



## What's next?

## **Production**

- Complete CMS120 production
  - Fall 2000 production for 2x10E33
    - ooDigi done // Ntuple done this week, hopefully.
  - Spring production for 2x10E33
    - In progress.
  - Production for 10E34 with new front end elec. simu.
- Prepare for next production

## **HLT** rates calculation / Trigger table.

## More Improvement ...

- Jets / MET
  - Algorithm for better resolution and energy scale.
- MET
  - Algorithm to remove badly measured jet events.
- → Algorithm for 10E34!



# **Expanding group**

We try to attract more people in the HCAL community and help them to get familiar with the CMS detector, CMS software and physics (analysis) at the LHC.

#### **Assumption:**

- geographical spread and diversity in skill level continue.

#### **Strategy:**

- lower the threshold for entering software development and data analysis.
- build a core software team for strong support (preferably in US).
- recruit experienced people to coordinate larger number of people.

#### **Potential manpower:**

- Universities in US, RDMS (not only ITEP and MSU), India, Turkey, Hungary...
- US CMS Software and Computing Project (Tier1 & CAS)
- → Started distributing hard disks with full CMS SW and MC events.
- → Regional meetings (Moscow, India, US)



# **Summary**

## **Simulation**

- Verify Simulation
- Transition to OSCAR/GEANT4

## **Calibration & Monitoring**

- Scenario from construction to in-situ calibration.
- Improvement for energy scale and resolution.

## **HCAL Code in ORCA**

Readout simulation

## HLT

- CMS120 data finally ready
  - → rate calculation and trigger table (2xE33)
- Apply improved algorithm.
- Algorithm for E34.



**Additional Slides** 



## Algorithm for L1 through Offline (1)

## L1 – calorimeter only (coarse segmentation)

- Resolution improvement
  - Equalize calorimeter response with simple correction
    - a x EC + b x HC, a,b depends on jet(ET,h)
    - a x (EC+HC), a depends on jet(ET,h)
- Fake Jets/Pileup jets rejection
  - Threshold cut on a central tower in jets (seed cut)

## L2 – calorimeter only (fine segmentation)

- Resolution improvement
  - Better energy extraction from ADC counts
  - Em/had cluster separation using transverse shower shape in crystals
- Fake jet/Pileup jet rejection
  - Use of transverse shower shape



## Algorithm for L1 through Offline (2)

## L3 – calorimeter plus pixel

- Resolution improvement
  - Pileup energy subtraction
    - Estimation of energy flow from pileup events using pixel hits/tracks.
- Fake jets/Pileup jets rejection
  - Vertex information and jet pointing using pixel hits/tracks.

## Offline – calorimeter plus fully reco-ed tracks

- Resolution improvement
- Fake jets/Pileup jets rejection
  - → Jet and MET will be reconstructed with Tracks, EM clusters and HAD clusters.
  - → All tracks down to E<sub>T</sub>~ 700MeV have to be reconstructed at 10E34!
- Physics correction e.g. correction for IFR/FSR.
  - → In-situ calibration!



# Improvement of jet energy resolution with tracks

